Lattice parameters guide superconductivity in iron-arsenides.

نویسندگان

  • Lance M N Konzen
  • Athena S Sefat
چکیده

The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped 'parent' materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which 'dopants' can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce 'in-plane' superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconductivity up to 35 K in the iron platinum arsenides (CaFe(1-x)Pt(x)As)10Pt(4-y)As8 with layered structures.

The discovery of high-Tc superconductivity in iron arsenides in 2008 has arguably been the biggest breakthrough in this field since the appearance of the copper oxide superconductors in 1986. In iron arsenides, superconductivity up to 55 K originates in layers of edge-sharing [FeAs4/4]-tetrahedra. Meanwhile, a series of different structure types have been identified, but the family of supercon...

متن کامل

Iron arsenides with three-dimensional FeAs layer networks: Can(n+1)/2(Fe1−xPtx)(2+3n)Ptn(n−1)/2As(n+1)(n+2)/2 (n = 2, 3)

We report the comprehensive studies between synchrotron X-ray diffraction, electrical resistivity and magnetic susceptibility experiments for the iron arsenides Can(n+1)/2(Fe1-xPtx)(2+3n)Ptn(n-1)/2As(n+1)(n+2)/2 for n = 2 and 3. Both structures crystallize in the monoclinic space group P21/m (#11) with three-dimensional FeAs structures. The horizontal FeAs layers are bridged by inclined FeAs pl...

متن کامل

A Variable Temperature Synchrotron X-ray Diffraction Study of Colossal Magnetoresistant NdMnAsO0.95F0.05

The recent discovery of high temperature superconductivity in Fe arsenides has invigorated research into transition metal pnictides. Colossal magnetoresistance (CMR) has recently been reported for NdMnAsO1-xFx for x = 0.05-0.08, with a maximum magnetoresistance achieved at low temperature (MR9T(3 K)) = -95%). This appears to be a novel mechanism of CMR, which is as a result of a second order ph...

متن کامل

Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer.

The discovery of high-temperature superconductivity in a layered iron arsenide has led to an intensive search to optimize the superconducting properties of iron-based superconductors by changing the chemical composition of the spacer layer between adjacent anionic iron arsenide layers. Superconductivity has been found in iron arsenides with cationic spacer layers consisting of metal ions (for e...

متن کامل

Normal-state charge dynamics in doped BaFe2As2: Roles of doping and necessary ingredients for superconductivity

In high-transition-temperature superconducting cuprates and iron arsenides, chemical doping plays an important role in inducing superconductivity. Whereas in the cuprate case, the dominant role of doping is to inject charge carriers, the role for the iron arsenides is complex owing to carrier multiplicity and the diversity of doping. Here, we present a comparative study of the in-plane resistiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 29 8  شماره 

صفحات  -

تاریخ انتشار 2017